1

This problem is from my discrete mathematics textbook.

I'm trying to find $\gcd(420,66)$

I compute $$\begin{align*} 420 &= 6 \times 66 + 24\\ 66 &= 2\times 24 + 18\\ 24 &= 1 \times 18 + 6\\ 18 &= 3 \times 6 + 0 \end{align*}$$ then I rewrite the equation $$\begin{align*} 6 &= 24 - 1 \times 18\\ 18 &= 66 - 2 \times 24\\ 24 &= 420 - 6 \times 66\\ \end{align*}$$

Now I try to perform substitutions which give me $$\begin{align*} 6 &= 24 -1 \times 18\\ & = 24-1 (66 - 2 \times 24)\\ &= 3 \times 24 -66 \end{align*}$$

My question is how do you transition from $$ 24-1 (66 - 2 \times 24)$$ to $$3 \times 24 -66$$

I just can't wrap my head around this part. Maybe I'm way over thinking this step.

Any help is appreciated thanks!

Arturo Magidin
  • 398,050
FireStorm
  • 135

1 Answers1

1

Distribute, reorder, associate: $$\begin{align*} 24 - 1(66-2\times 24) &= 24 -1(66) -1(-2\times 24)\\ &= 24 - 66 +2\times 24\\ &= 24 + 2\times 24 - 66\\ &= (1+2)24 - 66\\ &= 3\times 24 - 66. \end{align*}$$

Arturo Magidin
  • 398,050