Don't see why. However, let $C = S^{-1} F S,$ which we can do by defining
$F = S C S^{-1}.$ Your $DC=CD$ becomes
$$ S^{-1} A S S^{-1} F S = S^{-1} F S S^{-1} A S, $$
$$ S^{-1} A F S = S^{-1} F A S, $$
$$ A F = F A. $$
Your problem of about eleven hours ago deals with a diagonalizable matrix where the resulting diagonal has $n$ distinct entries on the diagonal, matrices, $n$ by $n.$ Please do these calculations:
$$
\left(
\begin{array}{rr}
5 & 0 \\
0 & 7
\end{array}
\right)
\left(
\begin{array}{rr}
p & q \\
r & s
\end{array}
\right) = ?
$$
$$
\left(
\begin{array}{rr}
p & q \\
r & s
\end{array}
\right)
\left(
\begin{array}{rr}
5 & 0 \\
0 & 7
\end{array}
\right) = ??
$$
So: every matrix commutes with the identity matrix. BUT, what kind of matrices commute with a diagonal matrix that has all diagonal elements different?
If the first pair was not enough, do
$$
\left(
\begin{array}{rrr}
5 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & 11
\end{array}
\right)
\left(
\begin{array}{rrr}
r & s & t \\
u & v & w \\
x & y & z
\end{array}
\right) = ?
$$
$$
\left(
\begin{array}{rrr}
r & s & t \\
u & v & w \\
x & y & z
\end{array}
\right)
\left(
\begin{array}{rrr}
5 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & 11
\end{array}
\right) = ??
$$