1

Let $A \in M_{n,m}$. Is this true that $\operatorname{rank}A=\operatorname{rank}(AA^*)$?

1 Answers1

0

It suffices to show that $A^*$ as a linear transformation is injective on $\text{Im}(A)$, i.e. $\text{ker}(A^*)\cap\text{Im}(A)=0$. Let $v\in\text{ker}(A^*)$. Then for all $w$, \begin{align*} \langle A^*v, w\rangle&=0\\ \langle v, Aw\rangle&=0 \end{align*} So $v\in\text{Im}(A)^\perp$. If $v$ is also in $\text{Im}(A)$, then it must be 0.

Alex Fok
  • 4,828