My textbook provided the following proof:
Base case: When $n=0, 9^n-8n-1=0=64\cdot0$, so $64\mid\left(9^n-8n-1\right)$.
Induction step: Suppose that $n\in\mathbb N$ and $64\mid\left(9^n-8n-1\right)$. Then there is some integer $k$ such that $9^n-8n-1=0=64k$. Therefore:
$$\begin{align} 9^{n+1}-8(n+1)-1&=9^{n+1}-8n-9\\ &=9^{n+1}-72n-9+64n\\ &=9\left(9^n-8n-1\right)+64n\\ &=9(64k)+64n\\ &=64(9k+n) \end{align}$$
so $64\mid\left(9^{n+1}-8(n+1)-1\right)$.
What I don't understand is how the equation goes from
$$= 9^{n+1} - 8n - 9$$
to
$$= 9^{n+1} - 72n - 9 + 64n$$