1

What class of functions $f(x)$ satisfies $f'(x)+f(x)=k$?

Mike
  • 498

2 Answers2

2

$(e^x f)' = e^x (f + f') = e^x k$.

$e^x f = \int^x_0 e^s k(s) + C$

$f = e^{-x} \int_0^x e^s k(s) ds + Ce^{-x}$

Yimin
  • 3,311
  • 17
  • 32
2

I suppose that $ k$ is a real number. If yes, then you multiply both sides by $e^x$ and use that:

If $f'(x) =g'(x), \quad \forall x \in I$, where $I \subset \mathbb R $ is an interval, then

$$ f(x) = g(x) + c , \quad x \in I$$

where $c \in \mathbb R $ is a constant.

Namely, in your case we have:

$ f'(x)+ f(x)= k \Longleftrightarrow e^x f'(x) + e^x f(x) = ke^x \Longleftrightarrow \left(e^x f(x) \right)' = (ke^x)' $

Thus, $e^x f(x) = k e^x + c, \quad x \in \mathbb R$, and $c$ is a real constant. Hence, you obtain:

$$ f(x) = ce^{-x} + k \quad x \in \mathbb R $$

passenger
  • 3,793