4

Let $R$ be a commutative ring with identity.For each $a\in R$ there exist $n(>1)\in \mathbb N$ such that $a^n=a$.

Prove that every prime ideal of $R$ is maximal.

My try

Let $I$ be a prime ideal of $R$. Then $R/I$ is an integral domain. If I can show using the hypothesis that $R/I$ is a field then we are done.

Any hints to show this?

Learnmore
  • 31,062

2 Answers2

8

Let $I \subset R$ be a prime ideal. Suppose $a \in R$, then $a^n - a = 0$ for some $n>1$, thus $a(a^{n-1} - 1) = 0 \in I$. Since $I$ is prime, then either $a \in I$, or $a^{n-1} - 1 \in I$. So if $\bar a \in R/I$ is nonzero, ie. $a \not\in I$, then $a^{n-1} - 1 \in I \implies \bar{a}^{n-1} = \bar{1}$ and $\bar{a} \in R/I$ is a unit (because $n-1 > 0$). It follows that $R/I$ is a field, hence $I$ is maximal.

Najib Idrissi
  • 54,185
0

Let: $a\in R$ \ $I$. Consider that $(a+I)^n=a^n+I=a+I$. But when $I$ is prime ideal, $\frac{R}I$ is an integral domain. So: $(a+I)((a+I)^{n-1}-(1+I))=0$, which implies that: $a+I=I$ or $(a+I)^{n-1}-(1+I)=I$. But $a\in R$ \ $I$, so: $(a+I)^{n-1}-(1+I)=I$ and from here: $(a+I)(a+I)^{n-2}=(a+I)^{n-2}(a+I)=1+I$

hamid kamali
  • 3,201