Can someone help me to find the sum?
$$\sum_{n=1}^{\infty}{\frac{n}{2^n}}$$
Can someone help me to find the sum?
$$\sum_{n=1}^{\infty}{\frac{n}{2^n}}$$
First observe that $\sum_{n=0}^\infty x^n=\frac1{1-x}$ for $|x|<1$ and then differentiation and letting $x=1/2$ gives the answer...
Let \begin{align} S &= 1\cdot \frac{1}{2} + &2 \cdot \frac{1}{2^2} + 3 \cdot \frac{1}{2^3} + \cdots\\ \frac{1}{2}S &= &1 \cdot \frac{1}{2^2} + 2 \cdot \frac{1}{2^3} + \cdots \end{align}
then we can get \begin{align} \frac{1}{2}S &= 1\cdot \frac{1}{2} + 1 \cdot \frac{1}{2^2} + 1 \cdot \frac{1}{2^3} + \cdots\\ &= \sum_{n=1}^{\infty} \frac{1}{2^n}=1 \end{align}
so $S = 2$.
Split the same region to infinitely many rectangles in two different ways. The red way gives the area as the sum in question. The black way is something even easier to calculate.