The explicit formula
\begin{equation}\label{Higgins-Gould-B}\tag{1}
B_n=\sum_{k=0}^n\frac1{k+1}\sum_{j=0}^k(-1)^j\binom{k}{j}j^n,\quad n\ge0,
\end{equation}
has a long history, it appeared in the paper
- H. W. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Monthly 79 (1972), 44--51; available online at https://doi.org/10.2307/2978125.
It is a special case of the formula (2.5) in the paper
- J. Higgins, Double series for the Bernoulli and Euler numbers, J. London Math. Soc. $2$nd Ser. 2 (1970), 722--726; Available online at http://dx.doi.org/10.1112/jlms/2.Part_4.722.
Its equivalent form is
\begin{equation}\label{Bernoulli-Stirling-eq}\tag{2}
B_n=\sum_{k=0}^n(-1)^k\frac{k!}{k+1}S(n,k), \quad n\ge0,
\end{equation}
where $S(n,k)$ is the Stirling numbers of the second kind. See page 29, Remark 2 in the paper
- Bai-Ni Guo and Feng Qi, An explicit formula for Bernoulli numbers in terms of Stirling numbers of the second kind, Journal of Analysis & Number Theory 3 (2015), no. 1, 27--30.
There existed at least seven alternative proofs of the formulas \eqref{Higgins-Gould-B} and \eqref{Bernoulli-Stirling-eq} in the paper [1, 2] above and in the following monographs and papers:
- L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing Co., Dordrecht and Boston, 1974, page 220.
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics---A Foundation for Computer Science, 2nd ed., Addison-Wesley Publishing Company, Reading, MA, 1994.
- B.-N. Guo and F. Qi, Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers, Analysis (Berlin) 34 (2014), no. 2, 187--193; available online at http://dx.doi.org/10.1515/anly-2012-1238.
- F. Qi and B.-N. Guo, Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers, Analysis (Berlin) 34 (2014), no. 3, 311--317; available online at http://dx.doi.org/10.1515/anly-2014-0003.
To the best of my knowledge, except the formulas \eqref{Higgins-Gould-B} and \eqref{Bernoulli-Stirling-eq} above, there are also the following explicit formulas for the Bernoulli numbers $B_n$:
\begin{align}\label{Higgins-Gould-B(11)}\tag{3}
B_n&=\sum_{j=0}^n(-1)^j\binom{n+1}{j+1}\frac{n!}{(n+j)!}\sum_{k=0}^j(-1)^{j-k}\binom{j}{k}k^{n+j}, \quad n\ge0;\\
B_n&=\sum_{i=0}^n(-1)^{i}\frac{\binom{n+1}{i+1}}{\binom{n+i}{i}}S(n+i,i), \quad n\ge0;\label{Bernoulli-Stirling-formula}\tag{4}\\
B_{2k}&=1+\sum_{m=1}^{2k-1}\frac{S(2k+1,m+1) S(2k,2k-m)}{\binom{2k}{m}}\\
&\quad-\frac{2k}{2k+1}\sum_{m=1}^{2k}\frac{S(2k,m)S(2k+1,2k-m+1)}{\binom{2k}{m-1}}, \quad k\in\mathbb{N};\tag{5}\\
B_{2k}&=\frac{(-1)^{k-1}k}{2^{2(k-1)}(2^{2k}-1)}\sum_{i=0}^{k-1}\sum_{\ell=0}^{k-i-1} (-1)^{i+\ell}\binom{2k}{\ell}(k-i-\ell)^{2k-1}, \quad k\in\mathbb{N};\tag{6}\\
B_{2m}&=(-1)^{m-1}\frac{m} {2^{2m-1}\bigl(2^{2m}-1\bigr)}\Biggl[\sum_{k=0}^{m-1} (-1)^k\binom{2m}{k}(m-k)^{2m-1}\\
&\quad+2\sum_{k=1}^{m-1}(-1)^k\sum_{\ell=0}^{m-k-1} (-1)^{\ell}\binom{2m}{\ell}(m-k-\ell)^{2m-1}\Biggr],\quad m\in\mathbb{N};\\
B_{2m}&=\frac{m} {2^{2m-1}\bigl(2^{2m}-1\bigr)}\sum_{\ell=1}^{2m}\frac{(-1)^{\ell-1}}{2^\ell} \biggl(\frac1\ell-\frac1{m+1}\biggr) \binom{2m+1}{\ell} \sum_{q=0}^\ell\binom{\ell}{q}(2q-\ell)^{2m}, \quad m\in\mathbb{N};\\
B_{2k}&= \frac12 - \frac1{2k+1} - 2k \sum_{i=1}^{k-1}
\frac{A_{2(k-i)}}{2(k - i) + 1},\quad k\in\mathbb{N};\tag{7}
\end{align}
where $A_m$ is defined by
\begin{equation*}
\sum_{m=1}^nm^k=\sum_{m=0}^{k+1}A_mn^{m}.
\end{equation*}
The formulas \eqref{Higgins-Gould-B(11)} and \eqref{Bernoulli-Stirling-formula} are also equivalent to eah other.
By the way, I would like to mention two intereting double inequalities related to the Bernoulli numbers $B_{2n}$ as follows.
- The double inequality
\begin{equation}\label{Bernoulli-ineq}\tag{8}
\frac{2(2n)!}{(2\pi)^{2n}} \frac{1}{1-2^{\alpha -2n}} \le |B_{2n}| \le \frac{2(2n)!}{(2\pi)^{2n}}\frac{1}{1-2^{\beta -2n}}
\end{equation}
is valid for $n\in\mathbb{N}$, where $\alpha=0$ and
$
\beta=2+\frac{\ln(1-6/\pi^2)}{\ln2}=0.6491\dotsc
$
are the best possible in the sense that they can not be replaced respectively by any bigger and smaller constants in the double inequality \eqref{Bernoulli-ineq}. See the paper [8] below.
- The ratios $\frac{|B_{2(n+1)}|}{|B_{2n}|}$ for $n\in\mathbb{N}$ can be bounded by
\begin{equation}\label{ineq-Bernou-equiv}\tag{9}
\frac{2^{2n-1}-1}{2^{2n+1}-1}\frac{(2n+1)(2n+2)}{\pi^2}
<\frac{|B_{2(n+1)}|}{|B_{2n}|}
<\frac{2^{2n}-1}{2^{2n+2}-1}\frac{(2n+1)(2n+2)}{\pi^2}.
\end{equation}
See the paper [9] below.
More related references
- H. Alzer, Sharp bounds for the Bernoulli numbers, Arch. Math. (Basel) 74 (2000), no. 3, 207--211; available online at https://doi.org/10.1007/s000130050432.
- Feng Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, Journal of Computational and Applied Mathematics 351 (2019), 1--5; available online at https://doi.org/10.1016/j.cam.2018.10.049.
- Sumit Kumar Jha, Two new explicit formulas for the Bernoulli numbers, Integers 20 (2020), Paper No. A21, 5 pp.
- Sumit Kumar Jha, Two new explicit formulas for the even-indexed Bernoulli numbers, J. Integer Seq. 23 (2020), no. 2, Art. 20.2.6, 6 pp.
- Sumit Kumar Jha, A new explicit formula for Bernoulli numbers involving the Euler number, Mosc. J. Comb. Number Theory 8 (2019), no. 4, 385--387; availble online at https://doi.org/10.2140/moscow.2019.8.389.
- B.-N. Guo and F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, J. Comput. Appl. Math. 255 (2014), 568--579; available online at http://dx.doi.org/10.1016/j.cam.2013.06.020.
- S.-L. Guo and F. Qi, Recursion formulae for $\sum_{m=1}^nm^k$, Z. Anal. Anwendungen 18 (1999), no. 4, 1123--1130; available online at http://dx.doi.org/10.4171/ZAA/933.
- S. Jeong, M.-S. Kim, and J.-W. Son, On explicit formulae for Bernoulli numbers and their counterparts in positive characteristic, J. Number Theory 113 (2005), no. 1, 53; available online at http://dx.doi.org/10.1016/j.jnt.2004.08.013.
- F. Qi, Derivatives of tangent function and tangent numbers, Applied Mathematics and Computation 268 (2015), 844--858; available online at https://doi.org/10.1016/j.amc.2015.06.123.
- L. Saalschutz, Vorlesungen uber die Bernoulli'schen Zahlen, ihren Zusammenhang mit den Secanten-Coefficienten und ihre wichtigeren Anwendungen, Berlin, 1893. Available since 1964 in Xerographed form from University Microfilms, Ann Arbor, Michigan. Order No. OP-17136.
- S. Shirai and K.-I. Sato, Some identities involving Bernoulli and Stirling numbers, J. Number Theory 90 (2001), no. 1, 130--142; available online at http://dx.doi.org/10.1006/jnth.2001.2659.
- Chao-Ping Chen and Feng Qi, Three improper integrals relating to the generating function of Bernoulli numbers, Octogon Mathematical Magazine 11(2003), no. 2, 408--409.
- Ye Shuang, Bai-Ni Guo, and Feng Qi, Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios, Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A Matematicas 115 (2021), no. 3, Paper No. 135, 12 pages; available online at https://doi.org/10.1007/s13398-021-01071-x.
- Feng Qi, Notes on a double inequality for ratios of any two neighbouring non-zero Bernoulli numbers, Turkish Journal of Analysis and Number Theory 6 (2018), no. 5, 129--131; available online at https://doi.org/10.12691/tjant-6-5-1.
- Z.-H. Yang and J.-F. Tian, Sharp bounds for the ratio of two zeta functions, J. Comput. Appl. Math. 364 (2020), 112359, 14 pages; available online at https://doi.org/10.1016/j.cam.2019.112359.
- L. Zhu, New bounds for the ratio of two adjacent even-indexed Bernoulli numbers, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114 (2020), no. 2, Paper No. 83, 13 pages; available online at https://doi.org/10.1007/s13398-020-00814-6.