If we know that $I_{n}=\int_0^\frac{\pi}{2}\sin^n(x)\,{\rm d}x$ we need to evaluate:
$\lim_{n\rightarrow\infty}\left[\frac{(2n)!!}{(2n-1)!!}\right]^2\cdot\frac{1}{2n+1}$ ( !! means double factorial ).
Here is all my steps to arrive at a squeeze theorem:
$I_{_{n}}=\frac{n-1}{n}\cdot I_{n-2}$, $\forall x\geq 2$. Therefore:
$I_{_{2k}}=\frac{\pi}{2}\cdot (\prod_{k=0}^{n}\frac{2k+1}{2k+2})=\frac{\pi}{2}\cdot(\prod_{k=1}^{n}\frac{2k-1}{2k})$
$I_{_{2k+1}}=\prod_{k=0}^{n}\frac{2k+2}{2k+3}=\prod_{k=1}^{n}\frac{2k}{2k+1}$
$\Rightarrow I_{2k}\geq I_{2k+1}$ , $\forall x\in[0,\frac{\pi}{2}]$
$\Rightarrow \prod_{k=1}^{n}\frac{2k}{2k+1}\leq\frac{\pi}{2}(\prod_{k=1}^{n}\frac{2k-1}{2k})\mid\cdot\prod_{k=1}^{n}\frac{2k}{2k-1}$
$\Rightarrow \prod_{k=1}^{n}\frac{2k^2}{4k^2-1}\leq\frac{\pi}{2}$
I don't know how can I arrive at $\left[\frac{(2n)!!}{(2n-1)!!}\right]^2\cdot\frac{1}{2n+1}$ and after use squeeze theorem.
Is something $\frac{(2n)!!}{(2n-1)!!}=\prod_{k=1}^{n}\frac{2k}{2k-1}$ ?
I want to continue with this method, if is something who can help me to finish I'll apreciate.