Prove that number of zeros at the right end of the integer $(5^{25}-1)!$ is $\frac{5^{25}-101}{4}.$
Attempt: I want to use the following theorem:
The largest exponent of $e$ of a prime $p$ such that $p^e$ is a divisor of $n!$ is given by $$e=[\frac{n}{p}]+[\frac{n}{p^2}]+[\frac{n}{p^3}]+\cdots$$.
The number of times the prime divisor $5$ is repeated in $(5^{25}-1)!$ equals the greatest exponent of $5$ contained in $(5^{25}-1)!$, which is $e_1=[\frac{(5^{25}-1)}{5}]+[\frac{(5^{25}-1)}{5^2}]+[\frac{(5^{25}-1)}{5^3}]+[\frac{(5^{25}-1)}{5^4}]+\cdots$
The number of times the prime divisor $2$ is repeated in $(5^{25}-1)!$ equals the greatest exponent of $2$ contained in $(5^{25}-1)!$, which is $e_2=[\frac{(5^{25}-1)}{2}]+[\frac{(5^{25}-1)}{2^2}]+[\frac{(5^{25}-1)}{2^3}+[\frac{(5^{25}-1)}{2^4}]+\cdots$
Therefore, the number of zeros at the right end equals the greatest exponent of $10$ contained in $(5^{25}-1)!$$=\min{(e_1, e_2)}$.
I am unable to simplify $e_1, e_2$. Please help me.