As Lucian hints in commments, with the change of variables $$t = \frac{1}{x}, dt = -\frac{dx}{x^2}$$ this integral becomes $$\int_0^\infty e^{-t^2}\, dt$$ which does converge, and in fact equals $\frac{\sqrt{\pi}}{2}$. There is a standard trick to evaluating integrals of this sort: for the more usual example $\int_{-\infty}^\infty e^{-x^2}\, dx$, write $$\left( \int e^{-x^2}\, dx\right)^2 = \int_{-\infty}^\infty e^{-x^2}\, dx \int_{-\infty}^\infty e^{-y^2}\, dy = \iint_{\mathbf{R}^2} e^{-x^2 - y^2}\, dx\, dy$$
and then change to polar coordinates: $$\iint_{\mathbf{R}^2} e^{-x^2 - y^2}\, dx\, dy = \int_0^{2\pi} \int_0^\infty e^{-r^2} (r\, dr)\, d\theta$$
and this last integral can be done easily.