Let $X= [0,1), S= \mathcal{B}_{[0,1)}, \lambda = $Lebesgue measure in $\mathcal{B}_{[0,1)} $ Prove
(a) $L_p(\lambda) \subsetneq \bigcap_{0<r<p} L_r(\lambda) $ for every fixed p.
(b) $L_{\infty}(\lambda) \subsetneq \bigcap_{0<p<+\infty} L_p(\lambda) $
And let $X= [0,+\infty), S= \mathcal{B}_{[0,+\infty)}, \lambda = $Lebesgue measure in $\mathcal{B}_{[0,+\infty)} $. Let $p \in [0,+\infty) $ be fixed. Prove $\bigcup _{p<q}L_q(\lambda) \subsetneq L_p(\lambda) $.
Can someone give me a hint?
Thanks in advance.