$\displaystyle\lim_{x\to 0}^{}\sin{x}^{x}$. I tried this $ P =\displaystyle \lim_{x\to 0}(\sin{x})^x$ taking the natural log on both side we get $\log_{e}P= \displaystyle \lim_{x\to 0}\log_{e}(\sin{x})^x$
$=\displaystyle \lim_{x\to 0}x\ln(\sin{x})$
$=\displaystyle \lim_{x\to 0}\frac{\ln(\sin{x})}{1\over x}$
this is $\frac{\infty}{\infty}$
I think we should use L'Hospital's rule, but I can't find the answer.