How to find $$\int_0^\infty e^{-ax^2-\frac{b}{x^2}}dx$$ using gaussian integral?
I tried complete the square: $$-ax^2-\frac{b}{x^2}=-\left(\sqrt{a}x+\frac{\sqrt{b}}{x}\right)^2+2\sqrt{ab}$$, but what next?
I tried integration by parts $u=e^{-ax^2-\frac{b}{x^2}}, dv=dx$, but what next?