$$\quad\quad \lim_{ x \to 0} \frac {\sin 5 x } {\sin 2 x } $$
I don't know how to start, should I multiply by something... to simplify the expression or ...?
$$\quad\quad \lim_{ x \to 0} \frac {\sin 5 x } {\sin 2 x } $$
I don't know how to start, should I multiply by something... to simplify the expression or ...?
As $x\to0,x\ne0$
So, divide the numerator & the denominator by $x$ to get
$$ \lim_{ x \to 0} \frac {\sin 5 x } {\sin 2 x }=\dfrac{5\lim_{x\to0}\dfrac{\sin5x}{5x}}{2\lim_{x\to0}\dfrac{\sin2x}{2x}}$$
Well, $$ \lim_{ x \to 0} \frac {\sin x } {x } = 1. $$ This implies following
$$ \lim_{ x \to 0} \frac { x } {\sin x } = 1, \quad \lim_{ x \to 0} \frac {\sin \alpha x } {x } = \alpha, \quad\text{and}\quad \lim_{ x \to 0} \frac { x } {\sin\beta x } = \frac{1}{\beta}. $$
In particular $$ \lim_{ x \to 0} \frac {\sin 5x } {x } = 5 \quad\text{ and }\quad \lim_{ x \to 0} \frac {x } {\sin 2x } = \frac{1}{2}. $$
Finally $$ \lim_{ x \to 0} \frac {\sin 5x } {\sin 2x } = \lim_{ x \to 0} \frac {x\sin 5x } {x\sin 2x } = \lim_{ x \to 0} \frac {\sin 5x } {x } \cdot \lim_{ x \to 0} \frac {x } {\sin 2x } = \frac{5}{2}. $$
In general you may always thinking that $\sin y \approx y$ when $y\approx 0$ ($\sin \alpha x \approx \alpha x$ if $x\approx 0$).
$$\begin{align} \displaystyle\lim_{x\to 0}\frac{\sin(5x)}{\sin(2x)}&=\lim_{x\to 0}\frac{\sin(5x)}{1}\cdot\frac{1}{\sin(2x)}\\ &=\lim_{x\to 0}\frac{\sin(5x)}{5x}\cdot\frac{2x}{\sin(2x)}\cdot\frac{5}{2}\\ &=\lim_{x\to 0}\frac{\sin(5x)}{5x}\cdot\lim_{x\to 0}\frac{2x}{\sin(2x)}\cdot\lim_{x\to 0}\frac{5}{2}\\ &=1\cdot1\cdot\frac{5}{2}\\ &=\frac{5}{2} \end{align}$$
Some good answers here already, but L'Hopital can also be used in this case.
$$\lim_{x\to0}\frac{\sin(5x)}{\sin(2x)} =\lim_{x\to0}\frac{5\cos(5x)}{2\cos(2x)} = \frac{5\cdot1}{2\cdot1} = \underline{\underline{\frac52}}$$
Using the fact that $\lim_{x \to 0} \frac{\sin x}{x} = 1$
\begin{align} \lim_{x \to 0} \frac{\sin 5x}{\sin 2x} & = \lim_{x \to 0} \frac{\sin 5x}{\sin 2x} \frac{5x}{5x} \frac {2x}{2x} \\ & =\lim_{x \to 0} \frac{\sin 5x}{5x} \frac{2x}{\sin 2x} \frac{5x}{2x} \\ & = 1 \cdot 1 \cdot \frac52 \\ & = \frac 52\\ \end{align}
Wherein we exploited the fact that multiplying in fractions with the same numerator and denominator is the same thing as multiplying the whole thing by $1$.
$\displaystyle\lim_{x\to0}\ \frac{sin(5x)}{sin(2x)}=\displaystyle\lim_{x\to0}\ \frac{5x-\frac{1}{3!}(5x)^3+\cdots}{2x-\frac{1}{3!}(2x)^3+\cdots}=\displaystyle\lim_{x\to0}\ \frac{5-\frac{5^3}{3!}x^2+\cdots}{2-\frac{2^3}{3!}x^2+\cdots}=\frac{5}{2}$