$\sum\limits_{i=1}^{n-1} i$.
I know the answer is $\frac{1}{2}(n-1)n$ but I don't quite understand it how to get there.
\begin{align} S=\sum_{i=1}^{n-1}i&=1+2+3+\ldots+n-1\\ S=\sum_{i=1}^{n-1}i&=n-1+n-2+n-3+\ldots+1 \end{align} \begin{align} 2S&=(1+n-1)+(2+n-2)+(3+n-3)+\ldots+(n-1+1)\\ 2S&=n+n+n+\ldots+n\\ 2S&=n(n-1)\\ \therefore S&=\dfrac{n(n-1)}{2} \end{align}