Prove that $f=x^4-4x^2+16\in\mathbb{Q}[x]$ is irreducible.
I am trying to prove it with Eisenstein's criterion but without success: for p=2, it divides -4 and the constant coefficient 16, don't divide the leading coeficient 1, but its square 4 divides the constant coefficient 16, so doesn't work. Therefore I tried to find $f(x\pm c)$ which is irreducible:
$f(x+1)=x^4+4x^3+2x^2-4x+13$, but 13 has the divisors: 1 and 13, so don't exist a prime number p such that to apply the first condition: $p|a_i, i\ne n$; the same problem for $f(x-1)=x^4+...+13$
For $f(x+2)=x^4+8x^3+20x^2+16x+16$ is the same problem from where we go, if we set p=2, that means $2|8, 2|20, 2|16$, not divide the leading coefficient 1, but its square 4 divide the constant coefficient 16; again, doesn't work.. is same problem for x-2
Now I'll verify for $f(x\pm3)$, but I think it will be fall... I think if I verify all constant $f(x\pm c)$ it doesn't work with this method... so have any idea how we can prove that $f$ is irreducible?