Prove by mathematical induction: $\forall n \ge 2, 1 + \frac1{2^2} + \frac1{3^2} + \cdots + \frac1{n^2} < 2 − \frac1n$
Basis Step: (We want to show, $P(2)$, which is 1 + $\frac1{2^2}<2-\frac12$).
$\frac1{2^2}=\frac14$, and $2-\frac12=\frac32$
So, $\frac1{2^2}<2-\frac12$.
Inductive step: (We want to show, $\forall n\ge2,\mathrm P(n)\to\mathrm P(n+1)$.
Let $k\ge2$ be an integer, arbitrary & fixed.
(We want to show, $\mathrm P(k)\to\mathrm P(k+1)$).
(I.H.) Assume $1+\frac1{2^2}+\frac1{3^2}+\cdots+\frac1{k^2}<2-\frac1k$ ("$\mathrm P(k)$")
(We want to show $\mathrm P(k+1)$, which is $1+\frac1{2^2}+\frac1{3^2}+\cdots+\frac1{(k+1)^2}<2−\frac1{k+1}$)
$$\begin{align} 1+\frac1{2^2}+\frac1{3^2}+\cdots+\frac1{(k+1)^2}&<2−\frac1{k+1}+\frac1{(k+1)^2}\tag{by I.H.}\\ &=2-\frac1k+\frac1{k^2+2k+1} \end{align}$$
(Thus, $\mathrm P(k)\to\mathrm P(k+1)$ for all $\mathrm k\ge2$
Also, $\mathrm P(2)$, so by mathematical induction, $\forall k\ge2,\mathrm P(k)$)
Can someone look at my solution and see if it is correct? I'm not 100% confident with it.