Let $\Omega$ be an open set in $\mathbb{R}^n,$ and $f:\Omega\rightarrow \mathbb{R}^n $ be in $C^{1}(\Omega)$.
Why:
If $\forall x\in\Omega$, we have det $D_{f}(x)\ne0$, then $[D_{f}(x)]^{-1}$ is a continuous function of $x$ on $\Omega$.
The linear mapping $D_{f}:\Omega \rightarrow Hom(\mathbb{R^{n}},\mathbb{R^{n}})$ is a continuous on $\Omega$. What does mean to say that $D_{f}:\Omega \rightarrow Hom(\mathbb{R^{n}},\mathbb{R^{n}}) $ is continuous?