$f(x)$ is a differentiable function on the real line such that $\lim_{x \rightarrow \infty} f(x)=1$ and $\lim_{x \rightarrow \infty} f~'(x)=\alpha$. Then :
$(A) ~\alpha $ must be $0$
$(B) ~\alpha $ need not be $0$ but $|\alpha|<1$
$(C) ~\alpha > 1$
$(D) ~\alpha < -1$
Attempt:
$$f~'(x) = \lim_{h \rightarrow 0} \dfrac {f(x+h)-f(x)}{h}$$
$$\lim_{x \rightarrow \infty} f~'(x) =\lim_{x \rightarrow \infty} \lim_{h \rightarrow 0} \dfrac {f(x+h)-f(x)}{h}$$
$$\lim_{x \rightarrow \infty} f~'(x) = \lim_{h \rightarrow 0} \lim_{x \rightarrow \infty}\dfrac {f(x+h)-f(x)}{h}\tag{1}$$
$$\lim_{x \rightarrow \infty} f~'(x) = \lim_{h \rightarrow 0}\dfrac {1-1}{h} = 0 $$
Hence $\alpha$ must be equal to $0$.
Is step $(1)$ legal?
I mean, can we interchange the two limits?
When can we not interchange the two limits and when can we?
Thank you very much for your help in this regard.