Let $a \in \mathbb{C}$, $|a| < 1$. Also let $f(z) = \dfrac{z - a}{1 - \overline{a}z}$.
I am asked to prove that $|f(z)| < 1$ if $|z| < 1$ and that $|f(z)| = 1$ if $|z| = 1$.
What is a good way to proceed on this problem?
Let $a \in \mathbb{C}$, $|a| < 1$. Also let $f(z) = \dfrac{z - a}{1 - \overline{a}z}$.
I am asked to prove that $|f(z)| < 1$ if $|z| < 1$ and that $|f(z)| = 1$ if $|z| = 1$.
What is a good way to proceed on this problem?
We first prove that if $|z|=1$ then $|f(z)|=1$. For we have $$ |f(z)|=|\frac{z-a}{1-\bar az}|=|\frac 1{\bar z}\frac{z-a}{1-\bar az}|=|\frac {z-a}{\bar z-\bar a}|=1 $$ Now apply maximum principle to get $|f(z)|<1$ for $|z|<1$.
$|f(z) |^2 = \dfrac {(z-a)(\bar z -\bar a)}{(1-\bar az)(1-a\bar z) } = \dfrac{ u^2 + v^2 -2 \Re (z \bar a)}{ 1 + u^2 v^2- 2\Re (z\bar a) } $, where $|z| = u , |a|= v$ . Note that $\Re (z \bar a) = \Re (\bar z a) $. So If $|z| =1$, you will get $f(z) =1$. And if $|z|<1$ , $$|f(z)| < 1 \\ \Leftrightarrow u^2 +v^2 < 1 + u^2 v^2\\ \Leftrightarrow (1-u^2)(1-v^2)>0 $$ which is true.