On pg. 587 (in the finite fields chapter) of Abstract Algebra, 3rd ed. by Dummit and Foote, the following statement is made:
'If $f_1(x)=x^4+x^3+1$, $f_2(x)=x^4+x+1$ are two of the irreducible quartics over $\mathbb{F}_2$, then a simple computation verifies that $\alpha(x)=x^3+x^2$ is a root of $f_2(x)$ in $\mathbb{F}_{16}=\mathbb{F_2}/(x^4+x^3+1)$.'
I understand why $\alpha(x)$ is a root, but I just can't grasp how they came up with it. Its like it was pulled out of thin air, and they make no mention of it. I know that you could find all the elements of the quotient group and try each one individually, but that seems like an extremely weird thing not to mention. How did they come up with $\alpha(x)$?