let ${}^nx$ = $x\uparrow\uparrow n =\underbrace {x^{x^{\cdot ^{\cdot ^{x}}}}}_{n}$ the nth tetration of x
Our goal: Is to find $\displaystyle{d\over dx}(^nx)$
Calculating some derivatives at first to try understand the patterns:
$\displaystyle{d\over dx}(^2x) = x^x(1+\ln x)$
$\displaystyle{d\over dx}(^3x) = (^3x)(^2x)\Big({1\over x}+\ln x+(\ln x)^2\Big)$
$\displaystyle{d\over dx}(^4x) = (^4x)(^3x)\Big({1\over x}+{^2x\over x}\ln x+{}^2x(\ln x)^2+{}^2x(\ln x)^3\Big)$
Now, we begin to notice a pattern involving $\ln x$. Just computing one more expression
$\displaystyle{d\over dx}(^5x) = (^5x)(^4x)\Big({1\over x}+{^3x\over x}\ln x+{({}^3x)({}^2x)\over x}(\ln x)^2+({}^3x)({}^2x)(\ln x)^3+({}^3x)({}^2x)(\ln x)^4\Big)$
Computing the general derivative
Since $\displaystyle {}^nx = x^{\big({}^{(n-1)}x\big)} = e^{{}^{(n-1)}x\ln x}$
Therefore
$${d\over dx}({}^nx) = {d\over dx}(e^{{}^{(n-1)}x\ln x}) = e^{{}^{(n-1)}x\ln x}{d\over dx}\big({}^{(n-1)}x\ln x\big) = {}^nx\Big({{}^{(n-1)}x\over x}+\ln x {d\over dx}\big({}^{(n-1)}x\big)\Big)$$
Now try to cast the general form of the derivative to resemble the pattern in the calculated derivatives, you can see they come in the form:
$${d\over dx}({}^nx) = ({}^nx)({}^{(n-1)}x)\Big({1\over x} + \cdots \Big)$$
Now, we could make
$${d\over dx}({}^nx) = ({}^nx)({}^{(n-1)}x)\Big({1\over x} + {{d\over dx}\big({}^{(n-1)}x\big)\over {}^{(n-1)}x}\ln x\Big)$$
Notice that the derivative always starts with two tetration factors; so that
$${{d\over dx}\big({}^{(n-1)}x\big)\over {}^{(n-1)}x{}^{(n-2)}x} = B(n) = \text{The big bracket}$$
Now, we could rewrite the derivative as
$${d\over dx}({}^nx) = ({}^nx)({}^{(n-1)}x)\Big({1\over x} + {}^{(n-2)}x\ln x B(n-1)\Big)$$
$B(n)$: the big bracket can also be defined recursively as
$$B(n) = {1\over x} + {}^{(n-2)}x\ln x B(n-1), \text{ if } n>3$$
$$B(3) = {1\over x} + \ln x + (\ln x)^2$$
$$\begin{align}{d\over dx}({}^nx)
&= ({}^nx)({}^{(n-1)}x)B(n) \\
&= ({}^nx)({}^{(n-1)}x)\Big({1\over x} + {}^{(n-2)}x\ln x B(n-1)\Big) \\
&= ({}^nx)({}^{(n-1)}x)\Bigg({1\over x} + {}^{(n-2)}x\ln x \Big({1\over x} + {}^{(n-3)}x\ln x B(n-2)\Big)\Bigg) \\
&= ({}^nx)({}^{(n-1)}x)\Bigg({1\over x} + {{}^{(n-2)}x\over x}\ln x + {}^{(n-2)}x{}^{(n-3)}x(\ln x)^2 B(n-2)\Big)\Bigg) \\
&= ({}^nx)({}^{(n-1)}x)\Bigg({1\over x} + {{}^{(n-2)}x\over x}\ln x + {}^{(n-2)}x{}^{(n-3)}x(\ln x)^2 \Big({1\over x} + {}^{(n-4)}x\ln x B(n-3)\Big)\Bigg) \\
&= ({}^nx)({}^{(n-1)}x)\Bigg({1\over x} + {{}^{(n-2)}x\over x}\ln x + {{}^{(n-2)}x{}^{(n-3)}x\over x}(\ln x)^2 + {}^{(n-2)}x{}^{(n-3)}x{}^{(n-4)}x(\ln x)^3 B(n-3)\Bigg) \\
&= ({}^nx)({}^{(n-1)}x)\Bigg({1\over x} + {{}^{(n-2)}x\over x}\ln x + {{}^{(n-2)}x{}^{(n-3)}x\over x}(\ln x)^2 + \cdots + \Big(\prod^i_{j=2}{{}^{n-j}x}\Big){(\ln x)^{i-1}\over x} + \cdots + \Big(\prod^{n-2}_{j=2}{{}^{n-j}x}\Big){(\ln x)^{(n-3)}}B(3)\Bigg) \\
&= ({}^nx)({}^{(n-1)}x)\Bigg({1\over x} + {{}^{(n-2)}x\over x}\ln x + {{}^{(n-2)}x{}^{(n-3)}x\over x}(\ln x)^2 + \cdots + \Big(\prod^i_{j=2}{{}^{n-j}x}\Big){(\ln x)^{i-1}\over x} + \cdots + \Big(\prod^{n-2}_{j=2}{{}^{n-j}x}\Big){(\ln x)^{(n-3)}} \Big({1\over x} + \ln x + (\ln x)^2\Big) \Bigg) \\
\end{align}$$
Now, all terms in $B(n)$ follow the same general form: $\displaystyle\Big(\prod^i_{j=2}{{}^{n-j}x}\Big){(\ln x)^{i-1}\over x}$, where $i$ is the index of the term, except the last 3 terms but notice the following similarity:
The third last term equals $\displaystyle\Big(\prod^{n-2}_{j=2}{{}^{n-j}x}\Big){(\ln x)^{(n-3)}\over x}$ which is the same as its general formula
The second last term equals
$$\Big(\prod^{n-2}_{j=2}{{}^{n-j}x}\Big){(\ln x)^{(n-3)}}\cdot \ln x =
({}^1x)\Big(\prod^{n-2}_{j=2}{{}^{n-j}x}\Big){(\ln x)^{(n-2)}\over ({}^1x)} =
\Big(\prod^{n-1}_{j=2}{{}^{n-j}x}\Big){(\ln x)^{(n-2)}\over x}$$
again it is the same as its general formula
The last term equals
$$\Big(\prod^{n-2}_{j=2}{{}^{n-j}x}\Big){(\ln x)^{(n-3)}}\cdot (\ln x)^2 =
({}^0x)({}^1x)\Big(\prod^{n-2}_{j=2}{{}^{n-j}x}\Big){(\ln x)^{(n-1)}\over ({}^0x)({}^1x)} =
\Big(\prod^{n}_{j=2}{{}^{n-j}x}\Big){(\ln x)^{(n-1)}\over x}$$
again it is the same as its general formula
Note that $\displaystyle ({}^0x) = 1, ({}^1x) = x$
Now we deduce that
$$\begin{align}{d\over dx}({}^nx) &= ({}^nx)({}^{(n-1)}x)\sum_{i=1}^{n}{\Bigg[\Big(\prod^i_{j=2}{{}^{n-j}x}\Big){(\ln x)^{(i-1)}\over x}\Bigg]} \\
&= {({}^nx)({}^{(n-1)}x)\over x}\sum_{i=1}^{n}{\Bigg[{(\ln x)^{(i-1)}}\prod^i_{j=2}{{}^{n-j}x}\Bigg]}\blacksquare
\end{align}$$