Suppose we have a sequence of random variables, $\{X_{n}\}_{n\geq 1}$ satisfying:
$\mathbb{P}(X_{j} = 2^{j}) = \mathbb{P}(X_{j} = -2^{j}) = \frac{1}{2}$
Then is it true that the CLT holds? Or sufficiently, does the following Lindeberg condition hold?
$\lim\limits_{n\rightarrow\infty}\dfrac{1}{s_{n}^{2}}\displaystyle\sum\limits_{j=1}^{n}E[(X_{j}-E[X_{j}])^2\chi_{\{|X_{j}|>\epsilon s_{n}\}}] = 0 \;\; \forall \epsilon>0$
where $s_{n}^{2} = \displaystyle\sum\limits_{j=1}^{n}Var[X_{j}]$. Specifically, we have $E[X_{j}] = 0$ and $s_{n}^{2} = \displaystyle\sum\limits_{j=1}^{n}4^{j}$. So we need to show:
$\lim\limits_{n\rightarrow\infty}\frac{1}{\sum\limits_{j=1}^{n}4^{j}}\displaystyle\sum\limits_{j=1}^{n}E[X_{j}^2\chi_{\{|X_{j}|>\epsilon s_{n}\}}] = 0 \;\; \forall \epsilon>0$.
I'm not sure how to deal with the set $\{|X_{j}| > \epsilon s_{n}\}$.
What happens if Lindeberg condition does not hold? I don't think the Lindeberg condition is necessary since $\{X_{n}\}_{n\geq 1}$ does not satisfy Feller's criterion:
$\lim\limits_{n\rightarrow\infty}\max\limits_{1\leq j\leq n}\dfrac{Var[X_{j}]}{s_{n}^{2}} = \lim\limits_{n\rightarrow\infty}\dfrac{4^{n}}{\displaystyle\sum\limits_{j=1}^{n}4^{j}} = \dfrac{3}{4} \neq 0$