Let $n(\neq 0,1)$ be a square-free integer. Suppose that $|a^2 - nb^2|$ is a prime integer for $a,b \in \mathbb{Z}$. Show that $a + b\sqrt{n}$ is an irreducible element of $\mathbb{Z}[\sqrt{n}]$. Then, show that $p = |a^2-nb^2|$ is not irreducible in $\mathbb{Z}[\sqrt{n}]$.
I can't prove the first part. I think the question is a bit un clear too. Are all $a + b\sqrt{n}$ is an irreducible element of $\mathbb{Z}[\sqrt{n}]$? Or just those with norm being a prime? For the second, I find it weird because i thought all primes in an integral domain is irreducible. Is $\mathbb{Z}[\sqrt{n}]$ not an integral domain? If so, can someone give me an example of a zero divisor in $\mathbb{Z}[\sqrt{n}]$ or a proof of $\mathbb{Z}[\sqrt{n}]$ not being an integral domain?
Thanks.
My attempt:
Claim 1 $N((a+b\sqrt{n})(c+d\sqrt{n}) = N(a+b \sqrt{n})N(c+d\sqrt{n})$
Proof \begin{align*} & N((a+b\sqrt{n})(c+d\sqrt{n}) \\ &= N((ac + bdn) + (ac + bd)\sqrt{n}) \\ &= |(ac+bdn)^2 - n(ac+bd)^2| \\ &= |(a^2c^2 + 2abcdn + b^2d^2n^2) - n(a^2c^2 + 2abcd + b^2d^2)| \\ &= |a^2c^2 + 2abcdn + b^2d^2n^2 - a^2c^2n - 2abcdn - b^2d^2n| \\ &= |a^2c^2 + b^2d^2n^2 - a^2c^2n - b^2d^2n| \\ &= |(a^2 - nb^2)(c^2 - nd^2)| \\ &= |a^2 - nb^2||c^2 - nd^2)| \\ &= N(a+b\sqrt{n})N(c+ d \sqrt{n}) \end{align*}
Claim 2. $a+b\sqrt{n}$ is a unit in $\mathbb{Z}[\sqrt{n}]$ if and only if $N(a+b\sqrt{n}) = 1$.
Proof
Since $a+b\sqrt{n}$ is a unit in $\mathbb{Z}[\sqrt{n}]$, we can find $(c+d \sqrt{n}) \in \mathbb{Z}[\sqrt{n}]$ such that $(a+b\sqrt{n})(c+d \sqrt{n}) = 1$. This gives us $N(a+b\sqrt{n})N(c+ d \sqrt{n}) = N((a+b\sqrt{n})(c+d \sqrt{n})) = N(1) = 1$. From the way the norm is defined, $N(a+b\sqrt{n}) \geq 0$ and $N(c+ d \sqrt{n}) \geq 0$. Therefore, we must have $N(a+b\sqrt{n}) = 1$ and $N(c+ d \sqrt{n}) = 1$.
I am having trouble proving the other direction
Proof for the question
First part Suppose $a + b\sqrt{n}$ is reducible in $\mathbb{Z}[\sqrt{n}]$, then $a + b\sqrt{n} = (\alpha_1 + \beta_1 \sqrt{n})(\alpha_2 + \beta_2 \sqrt{n})$ for some non-units $\alpha_1 + \beta_1 \sqrt{n}, \alpha_2 + \beta_2 \sqrt{n} \in \mathbb{Z}[\sqrt{n}]$. This gives us $ |a^2 - nb^2| = N(a + b\sqrt{n}) = N(\alpha_1 + \beta_1 \sqrt{n})(\alpha_2 + \beta_2 \sqrt{n}) = N(\alpha_1 + \beta_1 \sqrt{n})N(\alpha_2 + \beta_2 \sqrt{n})$. By claim 2, $N(\alpha_1 + \beta_1 \sqrt{n}) \neq 1$ and $N(\alpha_2 + \beta_2 \sqrt{n} \neq 1$ as $\alpha_1 + \beta_1 \sqrt{n}, \alpha_2 + \beta_2 \sqrt{n}$ are non-units. This implies that $N(\alpha_1 + \beta_1 \sqrt{n}) = p$ and $N(\alpha_2 + \beta_2 \sqrt{n}) = p$ as $p$ is prime. This presents us with a contradiction as $p = N(a + b\sqrt{n}) = N(\alpha_1 + \beta_1 \sqrt{n})N(\alpha_2 + \beta_2 \sqrt{n}) = p^2$. Hence, $a + b\sqrt{n}$ is irreducible in $\mathbb{Z}[\sqrt{n}]$.
Second part If $p$ is irreducible in $\mathbb{Z}[\sqrt{n}]$, then if $p = ab$ for some $a,b \in \mathbb{Z}[\sqrt{n}]$, $a$ is a unit or $b$ is a unit . This gives us $p^2 = N(p) = N(a)N(b)$. If $a$ is a unit, then $N(b) = p^2$.
I don't know how to continue
If $|ab| \neq |a||b|$, then my proof probably fail, but i think this is true.
Secondly, by finding a multiplicative inverse, is this proving that the element is irreducible? Is the proof they've given not complete?
– MathsIsFun Apr 07 '20 at 11:02