To obtain easy "direct" proofs it is convenient to work directly with divisibility relations, $ $ in particular to rewrite "$a$ is a unit" as $\,a\mid 1.\,$ Then we can use standard divisibility properties such as this property: $ $ if $\,a\mid r\,$ then $\,r\mid a\color{#c00}{\iff} r/a\mid 1,\,$ by scaling by or canceling $\,a.\,$ Combining this with $\,a\mid r,\ r\mid a\,\Rightarrow\, a,r\,$ are $\,\rm\color{#0a0}{associate},\,$ then it is mechanical to derive all of the common equivalent characterizations of "irreducible", namely:
$\begin{align} r\ \text{is irred}\!\!\overset{\rm def}\iff&\ \ r = ab\,\Rightarrow\, \quad\!a\mid 1\ \ {\rm or}\quad\ \ b\mid 1\quad\text{i.e. iff $\,a\,$ or $\,b\,$ is a unit}\\
\iff&\ \ r = ab\,\Rightarrow\,\quad\! a\mid 1\ \ {\rm or}\ \ r/a\mid 1\\
\color{#c00}\iff&\ \ r = ab\,\Rightarrow\,\quad\! a\mid 1\ \ {\rm or}\quad\ \ r\mid a\quad\text{i.e. iff every divisor $a$ is a unit or }\color{#0a0}{\rm associate}\\
\iff&\ \ r = ab\,\Rightarrow\, r/b\mid 1\ \ {\rm or}\quad\ \ r\mid a\\
\color{#c00}\iff&\ \ r = ab\,\Rightarrow\, \quad r\mid b\ \ {\rm or}\quad\ \ r\mid a\quad \text{i.e. iff $\,r\,$ is }\,\color{#0a0}{\rm associate\,} \text{ to $\,a\,$ or $\,b\,$}\\
\text{compare to } &\ \ r\,\mid\, ab\:\Rightarrow\, \quad r\mid b\ \ {\rm or}\quad\ \ r\mid a\quad\text{i.e. definition of $\,r\,$ is prime}
\end{align}$
Note that the final form makes trivial the deduction that primes are irreducible, namely
$\qquad\ \ r = ab\,\Rightarrow\, r\mid ab\overset{r\ \text{is prime}}\Rightarrow\ r\mid b\ \ {\rm or}\ \ r\mid a\,\Rightarrow\, r\,$ irreducible by the final form of irred