Prove that if $a_n$ is convergent, then $M_n:=\frac{1}{n}\sum_{1}^{n} a_n$ satisfies $\lim M_n=\lim a_n$.
(sorry for English)
Prove that if $a_n$ is convergent, then $M_n:=\frac{1}{n}\sum_{1}^{n} a_n$ satisfies $\lim M_n=\lim a_n$.
(sorry for English)
The goal is to show that for all $\varepsilon > 0$ there is an index $n$ such that $|M_n-a|<\varepsilon$, where $a=\lim_na_n$. Fix $N$ such that $|a_n-a|<\varepsilon/2, n>N$. Then for $n>N$: $$\begin{aligned} \left|\frac{1}{n}\sum_{i=1}^na_i-a\right|&\leqslant\left|\frac{1}{n}\sum_{i=1}^n(a_i-a)\right|\\ & \leqslant\left|\frac{1}{n}\sum_{i=1}^N(a_i-a)\right|+\left|\frac{1}{n}\sum_{i=N+1}^n(a_i-a)\right|=O\left(\frac{1}{n}\right)+\varepsilon/2<\varepsilon \end{aligned}$$ provided $n$ is large enough.