Let E be a Banach space and $K \subset E$ a compact subset in the strong topology. Let $(x_n)_{n \geq 1} \subset K$ such that $x_n \rightharpoonup x$ in $\sigma (E, E^*)$.
K is compact, so $(x_n)_n$ has a convergent subsequence $(x_{n_k})_k$ which has the limit $\bar{x} \in K$. Then we have:
$$x_{n_k} \to \bar{x} \Rightarrow x_{n_k} \rightharpoonup \bar{x}, \;\; \text{i.e} \;\; <f, x_{n_k}> \; \to \; <f, \bar{x}>, \; \forall f \in E^*.$$
But
$$ x_n \rightharpoonup x, \; \text{i.e.} \; <f, x_n> \;\; \to \;\; <f, x>, \;\; \forall f \in E^*. $$
It follows that
$$ <f, \bar{x}> = <f, x> \;\; \text{i.e.} \;\; \bar{x} = x. $$
So
$$ x_{n_k} \to x. $$
How can I show that $(x_n)$ is convergent?
Thank you!