A student that I'm tutoring showed me the following problem:
Let $a\gt 1,$ and $k,n\gt 0.$ Prove that $a^k-1\mid a^n-1$ if and only if $k\mid n$.
Solution: Since $k$ divides $n$, we have $n=ks$ for some integer $s$. $a^n-1=a^{ks}-1=(a^k)^s-1=(a^k-1)((a^k)^{s-1}+(a^k)^{s-2}+\dots+(a^k)^2+a^k+1)$. Thus, $a^k-1$ divides $a^n-1$.
Now suppose that $a^k-1$ divides $a^n-1$. Let $n=ks+r$ where $r\ (0\le r\le k-1)$ is a remainder when we divide $n$ by $k$. $a^n-1=a^{ks}a^r-1=((a^k)^s-1)a^r+(a^r-1)$. By the argument above, $a^k-1$ divides $a^{ks}-1.$ Thus, $a^k-1$ must divide $a^r-1$. Since $r\lt k,$ we have $r=0.$
He wanted to see another way to prove the converse and I got stumped! Can anyone think of an easy proof of why $a^k-1 \mid a^n-1$ if $k\mid n$?