Suppose that $X_n, Yn$ ($Y_n\neq 0$ a.s) converge to $X,Y$,respectively, in probability.
I need to show
1) $X_nY_n \rightarrow XY$ in probability.
2) $X_n/Y_n \rightarrow X/Y$ in probability.
My try
1) $P\{|X_nY_n-XY|> \epsilon \}=P\{|X_nY_n-X_nY+X_nY-XY|> \epsilon \}$ $\geq P\{|X_n||Y_n-Y|>\epsilon/2 \} +P\{|Y||X_n-X|>\epsilon/2 \}$
How to take $|X_n|$ and $|Y|$ away..??
2) Is $1/Y_n $ converges to $1/Y$ in probability? if Yes, how to show it ?