Let $R$ be a ring. The center of $R$ is the set $C(R) = \{c ∈ R : cr = rc, ∀r ∈ R\}$.
Determine elements in the center of the $n × n$ matrix ring $M_n (R) $ for any $n ≥ 2$.
So, we have that center $C(R)=\{x \in R / cr=rc, \forall r \in R\}$
and we need to find $C(M_n(R))\,\,\,\,\, (n \ge 2)$
The only thing that I could think of is to start looking $C(M_2 (R))$, taking $M_2(R)$ for $\begin{bmatrix}a&b\\c&d\end{bmatrix} \ge 0$ and if $a, b, c, d \ge 0$ in $R$ then, $I_2=\begin{bmatrix}1&0\\0&1\end{bmatrix} \ge 0$ but then $\begin{bmatrix}1&-1\\0&2\end{bmatrix} \not\ge 0$