How would I go about calculating $$\lim_{n\to\infty}\frac{\left(1 + \frac11\right)^1 + \left(1 + \frac12\right)^2 + \left(1 + \frac13\right)^3 + \cdots + \left(1 + \frac1n\right)^n}n$$ and $$\lim_{n\to\infty} \frac n{\left(1 + \frac11\right)^1 + \left(1 + \frac12\right)^2 + \left(1 + \frac13\right)^3 + \cdots + \left(1 + \frac1n\right)^n}$$
These limits have to do with $e$ but I don't know how to begin with them. Thanks for any help.