The definition of Euclidean ring: An integral domain R is called Euclidean ring if $\exists \delta$ : $R${$0$} -> $\mathbb{N} \cup{0}$ satisfying:
(1) $\delta (a) \leqslant \delta (ab)$ if a, b $\in R${$0$}; (2) $\forall a,b \in R${$0$} => $\exists q,r \in R$ s.t. $a=bq+r$, where either $r=0$ or $\delta (r) < \delta (b)$.
How do we usually set the delta function? The norm?
Let $x=a_1+b_1\sqrt{2}, y=a_2+b_2\sqrt{2}$, and $\delta(x)=|a_1^2-2b_1^2|, \delta(y)=|a_2^2-2b_2^2|$, then, $\delta(xy)=|(a_1+b_1\sqrt{2})(a_1-b_1\sqrt{2})(a_2+b_2\sqrt{2})(a_2-b_2\sqrt{2})|$, since $\delta(a)\geq 1$, for any $a\neq 0$
Consider $y\overline{x}=x\overline{x}q_1+r_1$, $\delta(r_1)=0$ or $\delta(r_1)=\delta((y-xq_1)(\overline{x}))=\delta(y-xq_1)\delta(\overline{x})<\delta(x\overline{x})=\delta(x)\delta(\overline{x})$, $\delta(r_0)=\delta(y-xq_1)<\delta(x)$
I'm not sure what am I doing... Orz