I want to prove that for all positive integers $n$, $2^1+2^2+2^3+...+2^n=2^{n+1}-2$. By mathematical induction:
1) it holds for $n=1$, since $2^1=2^2-2=4-2=2$
2) if $2+2^2+2^3+...+2^n=2^{n+1}-2$, then prove that $2+2^2+2^3+...+2^n+2^{n+1}=2^{n+2}-2$ holds.
I have no idea how to proceed with step 2), could you give me a hint?