0

Does the series ${a_n}$ = $\sum _1^n \frac{1}{n^{1+\alpha}}$ converge for all $\alpha$ > 0?

2 Answers2

1

Yes. You can use the Integral Test.

1

The series $\sum _{n=1}^{\infty} \frac{1}{n^{k}}$ converges for all $k>1$. It is divergent if $k \le 1$. It is a generalization of the Harmonic Series.

user5826
  • 11,982