Here are two approaches. First by exponentiation and Gauss's algorithm, second by CRT.
${\rm mod}\ 143\!:\,\ \color{#c00}{2^{18}}\equiv (2^2\!\cdot\!\!\overbrace{ 2^7}^{\large -15}\!)^2\equiv 60^2\equiv 20\overbrace{(37)}^{\large 3(60)}\equiv 5\!\overbrace{\!(5)}^{\large 4(37)}\!\!\equiv \color{#c00}{25}$
Therefore $\,\ \color{#c00}{2^{-18}\equiv \dfrac{1}{25}}\equiv \dfrac{6}{150}\equiv \dfrac{6}7\equiv \dfrac{120}{140}\equiv \dfrac{120}{-3}\equiv -40\ $ by Gauss's Algorithm
Or, we can use little Fermat and CRT (Chinese Remainder) and, again, all mental arithmetic.
${\rm mod}\ 11\!:\,\ 2^{10}\equiv 1\,\Rightarrow\, 2^{-18}\equiv (2^{10})^2 2^{-18}\equiv 2^2\equiv 4$
${\rm mod}\ 13\!:\,\ 2^{12}\equiv 1\,\Rightarrow\, 2^{-18}\equiv (2^{12})^2 2^{-18}\equiv 2^6\equiv -1$
${\rm mod}\ 11\!:\,\ 4\equiv x\equiv -1+13 \color{#a0f}k\equiv -1+2k\iff 2k\equiv 5\equiv 16\iff \color{#a0f}{k\equiv 8}$
Substituting: $\,\ x\equiv -1+13( \color{#a0f}{8\!+\!11n})\equiv 103+143n$