First, consider the following two Lemmas,
Lemma $1$: $$\lim_{n \to \infty} \sum_{r=0}^n \left(\dfrac{1}{\displaystyle\binom{n}{r}}\right) =2$$
Proof : First of all, note that the limit exists, since, if we let
$$\text{S}(n)=\displaystyle \sum_{r=0}^n \left(\dfrac{1}{\dbinom{n}{r}} \right)$$
then $\text{S}(n+1)<\text{S}(n)$ for $n \geq 4$. Now,
$\text{S}(n) = 1+ \displaystyle \sum_{r=1}^n \dfrac{1}{\dbinom{n}{r}}$
$\implies \text{S}(n) = 1+ \displaystyle \sum_{r=1}^n \dfrac{r}{n} \times \dfrac{1}{\dbinom{n-1}{r-1}} \ \left[\text{since} \dbinom{n}{r}= \dfrac{n}{r} \times \dbinom{n-1}{r-1} \right]$
Also,
$$ \text{S}(n) = 1+ \sum_{r=1}^n \dfrac{1}{\dbinom{n}{r}} = 1+ \sum_{r=1}^n \dfrac{1}{\dbinom{n}{n-r+1}} = 1+ \sum_{r=1}^n \dfrac{n-r+1}{n} \dfrac{1}{\dbinom{n-1}{n-r}} = 1+ \sum_{r=1}^n \dfrac{n-r+1}{n} \dfrac{1}{\dbinom{n-1}{r-1}} $$
$ \left[ \text{since} \ \displaystyle \sum_{r=a}^b f(r) = \displaystyle \sum_{r=a}^b f(a+b-r) \ \text{and} \ \dbinom{n}{r}=\dbinom{n}{n-r} \right]$
Thus, we have,
$$\begin{cases} \text{S}(n) = 1+ \displaystyle \sum_{r=1}^n \dfrac{r}{n} \times \dfrac{1}{\dbinom{n-1}{r-1}}\\ \text{S}(n) = 1+ \displaystyle \sum_{r=1}^n \dfrac{n-r+1}{n} \dfrac{1}{\dbinom{n-1}{r-1}} \end{cases}$$
Adding the above two expressions, we get,
$ 2\text{S}(n) = 2 + \displaystyle \sum_{r=1}^n \left( \dfrac{r}{n} \times \dfrac{1}{\dbinom{n-1}{r-1}} + \dfrac{n-r+1}{n} \dfrac{1}{\dbinom{n-1}{r-1}} \right) $
$= 2 + \dfrac{n+1}{n} \displaystyle \sum_{r=1}^n \dfrac{1}{\dbinom{n-1}{r-1}} $
$= 2 + \dfrac{n+1}{n} \times \text{S}(n-1)$
Since $ n \to \infty $, we have $\text{S}(n) = \text{S}(n-1) = \text{S}$ (say)
$ \implies 2\text{S} = \left(\dfrac{n+1}{n}\right) \times \text{S} +2 $
$ \implies \text{S} = \dfrac{2n}{n-1} = 2$ [since $n \to \infty $]
Lemma $2$ : $$\int_{0}^1 x^r (1-x)^{n-r} \mathrm{d}t = \dfrac{1}{(n+1)}\times \dfrac{1}{\dbinom{n}{r}}$$
Proof : Consider the $\text{R.H.S.}$,
$\text{I} = \displaystyle\int_{0}^1 x^r (1-x)^{n-r} \mathrm{d}t$
Let $x = \sin^2 \theta$
$\implies \text{I} = \displaystyle\int_{0}^{\frac{\pi}{2}} 2 \sin^{2r+1} \theta \cos^{2n-2r} \theta \ \mathrm{d}\theta $
Now, using Walli's Formula (or reduction formula) for the above integral, we have,
$\text{I} = \dfrac{1}{(n+1)}\times \dfrac{1}{\dbinom{n}{r}} $
This proves our Lemmas.
Now,
$$ \text{J} = \lim_{n \to \infty} \int_{0}^1 \frac{n+1}{2^{n+1}} \left(\frac{(t+1)^{n+1}-(1-t)^{n+1}}{t}\right) \mathrm{d}t $$
Since it is an even function in $t$, we have,
$$ \text{J} = \frac{1}{2} \times \lim_{n \to \infty} \int_{-1}^1 \frac{n+1}{2^{n+1}} \left(\frac{(t+1)^{n+1}-(1-t)^{n+1}}{t}\right) \mathrm{d}t $$
Let $t = 2x-1$
$\implies \text{J} = \displaystyle \lim _{n \to \infty} \int_{0}^1 (n+1) \left(\dfrac{x^{n+1}-(1-x)^{n+1}}{2x-1}\right) \mathrm{d}x$
$=\displaystyle \lim _{n \to \infty} \int_{0}^1 (n+1) (1-x)^n \left(\dfrac{\left(\frac{x}{1-x}\right)^{n+1}-1}{\frac{x}{1-x}-1}\right) \mathrm{d}x$
$=\displaystyle \lim _{n \to \infty} \int_{0}^1 (n+1) \sum_{r=0}^n (1-x)^n \left(\frac{x}{1-x}\right)^{r} \mathrm{d}x$
$=\displaystyle \lim _{n \to \infty} \sum_{r=0}^n (n+1) \int_{0}^1 x^r(1-x)^{n-r} \mathrm{d}x$
$=\displaystyle \lim _{n \to \infty} \sum_{r=0}^n \dfrac{1}{\dbinom{n}{r}}$ (Using Lemma 2)
$=\boxed{2}$ (Using Lemma 1).
Side Note : Another way to prove Lemma 1 is to use sandwich theorem.