3

Using either root test or ratio test. I have the feeling that it is the root test, I'm not sure how to proceed from this:

$$ \sqrt[n]{n! \over n^n}= {(n!)^{1\over n} \over n} $$

nukenine
  • 685

2 Answers2

1

You can use the ratio test. Here is a start

$$ \frac{a_{n+1}}{a_n} = \frac{(n+1)!}{(n+1)^{n+1}}\frac{n^n}{n!} = \frac{1}{(1+1/n)^n}\longrightarrow_{n\to \infty} \frac{1}{e} <1 $$

science
  • 2,900
1

Also $\frac{n\cdot(n-1)\cdots 2\cdot 1}{n\cdot n \cdots n} \le \frac{2\cdot 1}{n\cdot n} = \frac{2}{n^2}$ for large $n,$ if that helps

zhw.
  • 105,693