For the first one, you're asked to find
$$\sum\limits_{k=0}^n k{n \choose k}$$
Since the binomial coefficients have the $n-k$ symmetry, we can put
$$\sum\limits_{k=0}^n (n-k){n \choose n-k}$$
thus
$$S_n = \sum\limits_{k=0}^n k{n \choose k}=\sum\limits_{k=0}^n (n-k){n \choose n-k}$$
But the RHS is
$$n\sum\limits_{k=0}^n {n \choose n-k}-\sum\limits_{k=0}^n k{n \choose n-k}$$
Now
$$S_n=n\sum\limits_{k=0}^n {n \choose k}-\sum\limits_{k=0}^n k{n \choose k}$$
or
$$S_n=n\sum\limits_{k=0}^n {n \choose k}-S_n$$
$$S_n=n2^n-S_n$$
$$2 S_n=n2^n $$
$$S_n=n2^{n-1} $$
The second one becomes easy once you make use of the telescoping property you've been suggested already.