1

Show that $2^{\frac{1}{2}}+5^{\frac{1}{3}}$ is algebraic over $\mathbb{Q}$ of degree $6$.

Can I just construct $x=2^{\frac{1}{2}}+5^{\frac{1}{3}}$, $x-2^{\frac{1}{2}}=5^{\frac{1}{3}}$, $x^3-3*2^{\frac{1}{2}}x^2+6x-2\frac{1}{2}=5$, $x^3+6x-5=\sqrt{2}(3x^2+2)$, $(x^3+6x-5)^2=2(3x^2+2)^2$, $x^6+12x^4-10x^3+36x^2-60x+25=18x^4+24x^2+8$, $x^6-6x^4-10x^3+12x^2-60x+17=0$.

Does it show what is required?

Then, $2^{\frac{1}{2}}+5^{\frac{1}{3}}$ is algebraic over $\mathbb{Q}$ of degree 6.

user26857
  • 52,094
Richard
  • 591

0 Answers0