Prove or disprove that all numbers $717, 71717, 7171717,\dots$ are composite.
This is related to this question.
$\begin{array}\\ 717 &= \text{div by 3}\\ \color{blue}{71717} &= 29\cdot 2473\\ 7171717 &= \text{div by 7}\\ 717171717 &= \text{div by 3}\\ \color{blue}{71717171717} &= 857\cdot83683981\\ 7171717171717 &= \text{div by 7}\\ 717171717171717 &= \text{div by 3}\\ \color{blue}{71717171717171717} &= 11\cdot239\cdot2011\cdot13565021843\\ \end{array}$
Q: Is the subsequence in blue always composite?
Note 1: The numbers in blue are
$$F_n = \frac{71\times10^{6n-1}-17}{99}$$
and $F_n$ is composite for $n<5000$ (user Uncountable).
Also, $F_8=71717171717171717171717171717171717171717171717 =35972094619010351911⋅1993689065836910882277192947$
Note 2: For similar $737,73737,7373737,\dots$
$$P_n = \frac{73\times10^{6n-3}-37}{99}$$
$P_3 = 737373737373737$ is prime and $P_n$ is prime for $n = 3,7,95,422,2390$ for $n<5250$ (user Uncountable).