2

how can I show that $$\limsup_{n\to\infty} (a_n + b_n) \geq \limsup_{n\to\infty}(a_n) + \liminf_{n\to\infty}(b_n)$$

Yuri
  • 65

1 Answers1

5

Use $\limsup_n (x_n+y_n) \le \limsup_n x_n + \limsup_n y_n$, with $x_n = a_n+b_n$ and $y_n = -b_n$.