The question is to prove: $$I=\int_{-\infty}^{\infty}e^{-x^2}\,\Bbb dx=\sqrt{\pi}.$$
Let \begin{align} I_r&=\int_{-r}^{r}e^{-x^2}\,\Bbb dx \\ \implies I_r^2&=\int_{-r}^{r}e^{-x^2}\,\Bbb dx\int_{-r}^{r}e^{-y^2}\,\Bbb dy \\ &=\iint_{[-r,r]^2} e^{-x^2-y^2}\,\Bbb dx\,\Bbb dy. \end{align}
$x^2+y^2\leq r^2=D_r$
$$K_r=\iint_{D_r}{e^{-x^2-y^2}}\,\Bbb dx\,\Bbb dy$$
$$0\leq I_r-K_r=\int_{Q_r \setminus D_r}e^{-x^2-y^2}\,\Bbb dx\,\Bbb dy\leq e^{-r^2}\mu(Q_r)=e^{-r^2}4r^2\rightarrow0; r\rightarrow \infty.$$ The rest is clear to me just this last inequality: $\leq e^{-r^2}\mu(Q_r)$, where $\mu(A)$ is a measure of $A$. I’ll type out the rest of the proof if need be, for educational purposes$\ldots$