3

The book I am using lists something like $x \equiv2-(5/4) \equiv 2+5 \equiv 7 \pmod {25}$

I dont understand why $(-5/4)$ seemingly turns into $5$ mod $25$

user5826
  • 11,982
  • 2
    $$\dfrac{5}{4}\equiv\dfrac{5\times 6}{4\times 6}\equiv\dfrac{30}{24}\equiv \dfrac{5}{-1}\equiv -5 $$ – AgentS Apr 09 '15 at 02:57
  • Im curious as to where the 6 comes from here, Why can you just multiply everything by 6? – user2327195 Apr 09 '15 at 03:04
  • we can just multiply both sides by $6$ because $x\equiv y\pmod{n} \implies cx \equiv cy \pmod{n}$ : $$4x\equiv 5 \pmod{25} \implies 6\times 4x \equiv 6\times 5 \pmod{25}$$ – AgentS Apr 09 '15 at 03:09
  • Dividing by 4 is OK mod 25 because 4 and 25 are relatively prime. – GEdgar Apr 09 '15 at 14:59

2 Answers2

3

Hint: Because $4\cdot 19\equiv 76\equiv 1 \pmod{25}$, we have that the inverse of $4$ is $19 \pmod{25}$. That is $\frac14 \equiv 19 \pmod{25}$.

paw88789
  • 40,402
3

${\rm mod}\ 25\!:\ 4x \equiv -5\equiv 20\iff x\equiv 5,\, $ via cancel $4,\,$ valid by $\,(4,25)=1\,\Rightarrow\,4^{-1}\,$ exists.

Equivalently $\ x\equiv \dfrac{-5}4\equiv \dfrac{20}4\equiv 5$

Beware $ $ Modular fraction arithmetic is well-defined only for fractions with denominator coprime to the modulus. See here for further discussion.

Bill Dubuque
  • 272,048