The book I am using lists something like $x \equiv2-(5/4) \equiv 2+5 \equiv 7 \pmod {25}$
I dont understand why $(-5/4)$ seemingly turns into $5$ mod $25$
The book I am using lists something like $x \equiv2-(5/4) \equiv 2+5 \equiv 7 \pmod {25}$
I dont understand why $(-5/4)$ seemingly turns into $5$ mod $25$
Hint: Because $4\cdot 19\equiv 76\equiv 1 \pmod{25}$, we have that the inverse of $4$ is $19 \pmod{25}$. That is $\frac14 \equiv 19 \pmod{25}$.
${\rm mod}\ 25\!:\ 4x \equiv -5\equiv 20\iff x\equiv 5,\, $ via cancel $4,\,$ valid by $\,(4,25)=1\,\Rightarrow\,4^{-1}\,$ exists.
Equivalently $\ x\equiv \dfrac{-5}4\equiv \dfrac{20}4\equiv 5$
Beware $ $ Modular fraction arithmetic is well-defined only for fractions with denominator coprime to the modulus. See here for further discussion.