Does this series converge or diverge?
$$ \left[\prod_{k=1}^{n}\left(1+\frac{k}{n}\right)\right]^{\frac{1}{n}} $$
Does this series converge or diverge?
$$ \left[\prod_{k=1}^{n}\left(1+\frac{k}{n}\right)\right]^{\frac{1}{n}} $$
Hint This sequence is, up to an exponential, equivalent to:
$$\sum_{k=1}^{n}\frac{1}{n}\ln\left(1+\frac{k}{n}\right) =\int_{1}^2\cdots\cdots$$
(use Riemann sums)