I need help with the following problem:
Let $n$ and $m$ be positive integers.
Prove that
$$\frac{\gcd(n,m)}{n}{n \choose m}$$
is an integer.
I need help with the following problem:
Let $n$ and $m$ be positive integers.
Prove that
$$\frac{\gcd(n,m)}{n}{n \choose m}$$
is an integer.
Let $d =\gcd(m,n)$. By the Euclidean algorithm, there exist integers $A$ and $B$ such that $d = Am + Bn$. Thus
$$\displaystyle d \binom{m}{n} = A m \binom{m}{n} + Bn \binom{m}{n} = A m \binom{m}{n} + B m \binom{m-1}{n-1}$$, by the absorption identity. Then
$$\displaystyle d \binom{m}{n} = m \left[ A \binom{m}{n} + B \binom{m-1}{n-1} \right] = mC$$, where $C$ is an integer.
Thus $\displaystyle \frac{m}{d}$ divides $\displaystyle \binom{m}{n}$. In other words, $\displaystyle \frac{m}{(m,n)}$ divides $\displaystyle \binom{m}{n}$