As stated, the result is incorrect. Consider the shared probability space with respect to which the stochastic processes are defined, and assume the following integrability conditions for the processes: $\alpha, \beta \in\mathbb L^2_{[0,T]\times\Omega}(\lambda\otimes\mathbb P)$. Here, $\lambda$ is the $1$-dimensional Lebesgue measure, while $\Omega$ and $\mathbb P$ are the underlying sample space and probability measure, respectively. Then, using Fubini's theorem, we see that
$\begin{array}{rll}
{\bf C}\text{ov}(\int_0^T \alpha_s\text ds,\ \int_0^T \beta_r\text dr) & = &\mathbb E[\int_0^T \alpha_s\text ds\int_0^T \beta_r\text dr] - \mathbb E[\int_0^T \alpha_s\text ds]\mathbb E[\int_0^T \beta_r\text dr] \\ &=& \mathbb E[\int_0^T\int_0^T \alpha_s\beta_r\text ds\text dr]-\int_0^T \mathbb E[\alpha_s]\text ds\int_0^T \mathbb E[\beta_r]\text dr \\& = &\int_0^T\int_0^T \mathbb E[\alpha_s\beta_r]\text ds\text dr-\int_0^T \int_0^T \mathbb E[\alpha_s]\mathbb E[\beta_r]\text ds\text dr \\ &=& \int_0^T\int_0^T (\mathbb E[\alpha_s\beta_r]-\mathbb E[\alpha_s]\mathbb E[\beta_r])\text ds\text dr \\ &=& \int_0^T\int_0^T {\bf C}\text{ov}(\alpha_s,\ \beta_r) \text ds\text dr
\end{array}$
That is,
$${\bf C}\text{ov}\left(\int_0^T \alpha_s\text ds,\ \int_0^T \beta_r\text dr\right) = \int_0^T\int_0^T {\bf C}\text{ov}(\alpha_s,\ \beta_r) \text ds\text dr$$
In particular,
$ \begin{array}{rll}{\bf V}\text{ar}(\int_0^T \alpha_s\text ds) &=& \int_0^T\int_0^T {\bf C}\text{ov}(\alpha_s,\ \alpha_r) \text ds\text dr \\&=& \int_0^T\int_0^r {\bf C}\text{ov}(\alpha_s,\ \alpha_r) \text ds\text dr + \int_0^T\int_r^T {\bf C}\text{ov}(\alpha_s,\ \alpha_r) \text ds\text dr \\&=& \int_0^T\int_0^r {\bf C}\text{ov}(\alpha_s,\ \alpha_r) \text ds\text dr + \int_0^T\int_0^r {\bf C}\text{ov}(\alpha_s,\ \alpha_r) \text ds\text dr\\ &=&2\int_0^T\int_0^r {\bf C}\text{ov}(\alpha_s,\ \alpha_r) \text ds\text dr
\end{array}$