I am really stuck on this problem.
Solve the following system of simultaneous congruences
$X + 3Y \equiv 2 \pmod5 \hspace{50pt} X+2Y \equiv 3 \pmod5$
$ X + 2Y \equiv 3 \pmod7 \hspace{50pt} 2X + Y \equiv 4 \pmod7$
Using the Chinese Remainder Theorem I have found separate solutions to
$ 1) \hspace{5pt} x \equiv 2 \pmod 5 \hspace{30pt} and \hspace{30pt} 2) \hspace{5pt} x \equiv 3 \pmod 5$
$ \hspace{12pt}x \equiv 3 \pmod 7 \hspace{30pt} \hspace{58pt} x \equiv 4 \pmod 7$
These are $x =17$ for $ \ 1) \ $ and $ \ x = 18$ for $ \ 2)$. Is this even the right way to proceed, and if it is where do you go from here?
Any help would be really good!