That
$$\lim_{n \to \infty}\sum_{k=1}^n \frac{n}{n^2 + k^2} = \frac{\pi}{4},$$
is easily shown by identifying this as the limit of a Riemann sum for $\displaystyle \int_0^1 (1 + x^2)^{-1} \, dx$.
We can find the limit in terms of the integral by bounding and aplying the squeeze principle:
$$\int_{k/n}^{(k+1)/n} \frac{dx}{1+x^2} \leqslant \frac{n}{n^2 + k^2}=\frac{1/n}{1 + (k/n)^2}\leqslant \int_{(k-1)/n}^{k/n} \frac{dx}{1+x^2},$$
leading to
$$\int_{1/n}^{1} \frac{dx}{1+x^2} + \frac{1}{2n}\leqslant \sum_{k=1}^n\frac{n}{n^2 + k^2}\leqslant \int_{0}^{1} \frac{dx}{1+x^2}.$$
Can anyone suggest an "elementary" way to find this limit without using the integral.
Thanks.