$$
\begin{aligned}
& \quad \int\frac{d x}{\left(a^2 \sin ^2 x+b^2 \cos ^2 x\right)^2} \\
& =\int \frac{\sec ^4 x}{\left(a^2 \tan ^2 x+b^2\right)^2} d x \\
& =\int \frac{1+t^2}{\left(a^2 t^2+b^2\right)^2} d t \\
& =\int \frac{1+t^2}{a^4 t^4+2 a^2 b^2t^2+b^4} d t \\
& =\int \frac{\frac{1}{t^2}+1}{a^4 t^2+\frac{b^4}{t^2}+2 a^2 b^2} d t \\
& =\frac{1}{2} \int \frac{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\left(a^2+\frac{b^2}{t^2}\right)+\left(\frac{1}{a^2} -\frac{1}{b}\right)\left(a^2-\frac{b^2}{t^2}\right)}{a^4 t^2+\frac{b^4}{t^2}+2 a^2 b^2} d t \\
& =\frac{1}{2}\left(\frac{1}{a^2}+\frac{1}{b^2}\right) \int \frac{d\left(a^2 t-\frac{b^2}{t}\right)}{\left(a^2 t-\frac{b^2}{t}\right)^2+4 a^2 b^2}+\frac{1}{2}\left(\frac{1}{a^2}-\frac{1}{b^2}\right) \int \frac{d\left(a^2 t+\frac{b^2}{t}\right)}{\left(a^2 t+\frac{b^2}{t}\right)^2} \\
& = \frac{1}{4a b} \left(\frac{1}{a^2}+\frac{1}{b^2}\right) \tan ^{-1}\left(\frac{a^2 t-\frac{b^2}{t}}{2 a b}\right) -\frac{1}{2}\left(\frac{1}{a^2}-\frac{1}{b^2}\right)\left(\frac{t}{a^2 t^3+b^2}\right)+C \\
&
\end{aligned}
$$
By the way, putting back the limits yields
$$\int_0^{\frac{\pi}{2}} \frac{d x}{\left(a^2 \sin ^2 x+b^2 \cos ^2 x\right)^2}= \frac{\pi}{4 a b}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)=\frac{\pi}{4 a^3 b^3}\left(a^2+b^2\right) $$